Biclustering of Expression Data
نویسندگان
چکیده
An efficient node-deletion algorithm is introduced to find submatrices in expression data that have low mean squared residue scores and it is shown to perform well in finding co-regulation patterns in yeast and human. This introduces "biclustering", or simultaneous clustering of both genes and conditions, to knowledge discovery from expression data. This approach overcomes some problems associated with traditional clustering methods, by allowing automatic discovery of similarity based on a subset of attributes, simultaneous clustering of genes and conditions, and overlapped grouping that provides a better representation for genes with multiple functions or regulated by many factors.
منابع مشابه
An Improved Biclustering Algorithm for Gene Expression Data
Cheng-Church (CC) biclustering algorithm is the popular algorithm for the gene expression data mining at present. Only find one biclustering can be found at one time and the biclustering that overlap each other can hardly be found when using this algorithm. This article puts forward a modified algorithm for the gene expression data mining that uses the middle biclustering result to conduct the ...
متن کاملe-CCC-Biclustering: Related work on biclustering algorithms for time series gene expression data
This document provides supplementary material describing related work on biclustering algorithms for time series gene expression data analysis. We describe in detail three state of the art biclustering approaches specifically design to discover biclusters in gene expression time series and identify their strengths and weaknesses.
متن کاملGene co-expression networks via biclustering Differential gene co-expression networks via Bayesian biclustering models
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...
متن کاملبه کارگیری خوشهبندی دوبعدی با روش «زیرماتریسهای با میانگین- درایههای بزرگ» در دادههای بیان ژنی حاصل از ریزآرایههای DNA
Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...
متن کاملEfficient Biclustering Algorithms for Identifying Transcriptional Regulation Relationships Using Time Series Gene Expression Data
Biclustering algorithms have shown to be remarkably effective in a variety of applications. Although the biclustering problem is known to be NP-complete, in the particular case of time series gene expression data analysis, efficient and complete biclustering algorithms, are known and have been used to identify biologically relevant expression patterns. However, these algorithms, namely CCC-Bicl...
متن کاملDifferential gene co-expression networks via Bayesian biclustering models
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. International Conference on Intelligent Systems for Molecular Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 2000